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ABSTRACT

Sparse Autoencoders (SAEs) have emerged as a powerful unsupervised method
for extracting sparse representations from language models, yet scalable train-
ing remains a significant challenge. We introduce a suite of 256 SAEs, trained on
each layer and sublayer of the Llama-3.1-8B-Base model, with 32K and 128K fea-
tures. Modifications to a state-of-the-art SAE variant, Top-K SAEs, are evaluated
across multiple dimensions. In particular, we assess the generalizability of SAEs
trained on base models to longer contexts and fine-tuned models. Additionally,
we analyze the geometry of learned SAE latents, confirming that feature splitting
enables the discovery of new features. The Llama Scope SAE checkpoints are
publicly available at https://huggingface.co/fnlp/Llama-Scope,
alongside our scalable training, interpretation, and visualization tools at https:
//github.com/OpenMOSS/Language-Model-SAEs. These contribu-
tions aim to advance the open-source Sparse Autoencoder ecosystem and sup-
port mechanistic interpretability research by reducing the need for redundant SAE
training.

1 INTRODUCTION

Mechanistic interpretability has long grappled with the challenge of identifying interpretable prim-
itives within language models. Despite this, researchers have demonstrated that the structure of
network representations tends to be linear, sparse, and decomposable (Mikolov et al., 2013; Olah
et al., 2020; Elhage et al., 2022b; Gurnee et al., 2023). Ideally, the model’s components, such as
neurons and attention heads, would correspond directly to interpretable features of the input. How-
ever, due to superposition (Arora et al., 2018; Elhage et al., 2022b) and the misalignment of linear
features with neuron bases (Elhage et al., 2023), this is not typically the case.

Sparse Autoencoders (SAEs) (Bricken et al., 2023; Huben et al., 2024; Templeton et al., 2024b)
offer a promising approach to addressing superposition. The features extracted by SAEs exhibit
high monosemanticity and causal relevance, allowing them to capture significantly more features
than neuron-based methods in pretrained Transformer models(Olah et al., 2020; Bills et al., 2023;
Huben et al., 2024). This technique aids in identifying the latent variables within neural networks,
providing anchor points for reverse engineering. These features may also prove useful in addressing
model hallucination and mitigating safety-relevant behaviors.

Despite these advances, research in this area remains somewhat disconnected from industrial-scale
language models. While recent efforts have begun training and investigating SAEs on models ex-
ceeding 8 billion parameters (Templeton et al., 2024b; Engels et al., 2024; Gao et al., 2024; Lieberum
et al., 2024), rigorous interpretability research on such large models is still in its early stages. Com-
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prehensive analyses often require SAEs trained across multiple sites (e.g., for SAE-based circuit
analysis (He et al., 2024; Marks et al., 2024; Ge et al., 2024)) or trained to handle multiple feature
sizes (e.g., for feature splitting (Bricken et al., 2023) and identifying ultra-rare features (Templeton
et al., 2024b)).

To address these challenges, we introduce Llama Scope, a suite of 256 Sparse Autoencoders trained
on Llama-3.1-8B, a widely used open-source large language model. Llama Scope aims to facilitate
research in mechanistic interpretability by providing ready-to-use, open-source SAE models, reduc-
ing the need for extensive retraining. We believe that this open-source ecosystem will serve as a
common language for researchers to communicate and share insights across the field.

The main contributions of this work are highlighted as follows:

Decomposing Every Activation Space of Llama-3.1-8B-Base. We train SAEs on every sublayer,
namely post-MLP residual stream, attention output, MLP output, and Transcoders, for all 32 layers
with 32K and 128K feature widths (Section 3.2). This results in 256 SAEs in total. Such a com-
prehensive suite of SAEs trained on industrial-scale language models opens up new possibilities
for both interpretability and LLM research. Following Lieberum et al. (2024), we list a number of
exciting research directions that can be pursued with this suite in Section 5.

Improved TopK SAEs. We make several modifications to the Top-K SAEs, including incorporat-
ing the 2-norm of the decoder columns into the TopK computation, post-processing TopK SAEs to
JumpReLU variants, and introducing a K-annealing training schedule (Section 2.4).

Comprehensive Evaluation. Llama Scope SAEs are evaluated using a range of metrics, including
canonical metrics like sparsity-fidelity trade-off, latent firing frequency, and feature interpretability.
We also assess the generalizability of SAEs trained on base models to longer contexts and fine-tuned
models and analyze the geometry of learned SAE latents (Section 4).

Disk-IO Friendly Training Infrastructure. A mixed parallelism approach is employed to train
SAEs with a large number of features, which significantly reduces the memory bottleneck of SAE
training (Appendix A).

2 CONCEPTUAL AND TECHNICAL BACKGROUND

2.1 ATTACKING SUPERPOSITION WITH SPARSE AUTOENCODERS

The Sparse Autoencoder approach is motivated by the superposition hypothesis (Arora et al., 2018;
Elhage et al., 2022b), which posits that the representations learned by neural networks are composed
of independent features with the following properties:

• Decomposability: High-dimensional representations can be expressed as a combination of
independent, interpretable features.

• Linearity: Features are represented linearly, meaning the direction of each feature indicates
the presence of a specific concept, while its magnitude reflects the concept’s strength.

• Sparsity: The decomposition is sparse, with only a few features active at any given time.

• Overcompleteness: The number of underlying features exceeds the dimensionality of the
representation.

This hypothesis combines several well-established concepts from the literature. For instance, in Ol-
shausen & Field (1996), it has been shown that images can be sparsely represented by an overcom-
plete basis set of Gabor functions. Similarly, Mikolov et al. (2013) showed that word embeddings
exhibit a degree of linear structure, exemplified by relationships such as vking−vqueen ≈ vman−vwoman.
Linear probing (Alain & Bengio, 2017; Gurnee et al., 2023) also reflects this hypothesis, as it as-
sumes the linearity of features in neural networks.

Despite some modifications (Engels et al., 2024) and counterexamples (Csordás et al., 2024), the
superposition hypothesis remains a valuable framework of how individual features are represented
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in neural networks. To overcome the superposition problem, the field of mechanistic interpretability
has been actively developing methods to extract sparse and linear features from neural networks (El-
hage et al., 2022a; Bricken et al., 2023), with Sparse Autoencoders being one of the most prominent
approaches.

2.2 VANILLA SPARSE AUTOENCODERS

Sparse Autoencoders are designed to reverse the effects of superposition by extracting features that
are sparse, linear, and decomposable.

A Sparse Autoencoder typically consists of a single hidden layer. The input x is linearly mapped to
a hidden layer f(x) followed by a non-linear activation function.

f(x) = ReLU(W encx + benc), (1)

Where W enc ∈ RF×D is the weight matrix and benc ∈ RF is the bias vector. The hidden layer is
then linearly mapped back to the input space to reconstruct the input x̂ with W dec ∈ RD×F and a
bias term bdec ∈ RD:

x̂ = W decf(x) + bdec. (2)

To ensure that the extracted features are sparse, a sparsity constraint is applied to the hidden layer.
A common approach is L1 regularization, which encourages fewer active features while minimizing
reconstruction error:

L = LMSE + LSparsity = ∥x− x̂∥2 + λ

F∑
i=1

∥fi(x)∥1, (3)

Conceptually, the encoder decides which features are activated and to what degree, while the decoder
maps these features back to the input space. The decoder columns W dec

:,i form an overcomplete basis
for the latent space, where each column’s direction corresponds to a specific feature.

There are two primary ways to interpret the features extracted by SAEs. The encoder view focuses
on feature activations, identifying which inputs activate particular features and to what extent. The
decoder view, by contrast, interprets the basis formed by the decoder columns, revealing the geomet-
ric structure of the latent space. This perspective provides insight into how neural networks encode
complex information in a compressed form.

2.3 TOP-K SPARSE AUTOENCODERS

We follow the approach of Gao et al. (2024), which introduced Top-K Sparse Autoencoders (SAEs)
as an improvement over vanilla SAEs (Section 4.2), demonstrating better performance on canonical
metrics such as the sparsity-fidelity trade-off (Gao et al., 2024), as well as on novel evaluation
metrics proposed by Templeton et al. (2024a).

Top-K SAEs enforce sparsity by selecting only the K most active features, fi(x), for reconstruction,
setting the remaining features to zero. The hidden layer of the SAE is thus defined as:

fi(x) = TopK(ReLU(W enc
i,: x + benci )), i ∈ {1, 2, . . . , F}, (4)

The units in the hidden layer, fi(x), are referred to as features, representing the magnitude of the
corresponding latent interpretability primitives.

As in the vanilla SAE, the hidden layer is then mapped back to the input space using a decoder
matrix as in Equation 2. In addition, the decoder columns W dec

:,i are set to unit 2-norm after each
minibatch to prevent the network from shrinking feature activations and compensating by increasing
the norm of the corresponding decoder columns.
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The training objective is to minimize the reconstruction error, which is simply the mean squared
error: L = LMSE = ∥x− x̂∥2.

2.4 MODIFICATIONS TO TOP-K SAES

We introduce several modifications to the Top-K SAEs. Notably, we do not apply any auxiliary loss
to revive dead features, as this is rarely an issue in our SAEs.

Incorporating the 2-norm of Decoder Columns in Top-K Computation. One key modification
involves incorporating the 2-norm of the decoder columns into the Top-K computation to avoid
normalizing decoder columns W dec

:,i to unit 2-norm after each minibatch, which adopts the same
motivation as Templeton et al. (2024b). Specifically, we redefine the activation of a feature, fi(x),
as the product of the feature’s activation and the 2-norm of the corresponding decoder column,
∥W dec

:,i ∥2. The hidden layer is thus computed as:

Mask = TopK

ReLU(W encx + benc) ·


∥W dec

:,1 ∥2
∥W dec

:,2 ∥2
...

∥W dec
:,F ∥2


 ,

fi(x) = Maski · (ReLU(W enc
i,: x + benci )), i ∈ {1, 2, . . . , F}.

(5)

This modification also avoids the need to prune gradients parallel to the decoder columns in the
Adam optimizer, which was previously required to prevent suboptimal training outcomes (Bricken
et al., 2023). We conjecture that pruning gradients in this manner introduces noise into the Adam
momentum, leading to less efficient SAE training. By incorporating the 2-norm into the Top-K
computation, we achieve the same sparsity enforcement without the need for additional pruning.

It is important to note that during training, the 2-norm of the decoder columns is not fixed to 1,
which can conflict with its interpretation as the direction of the feature (Section 2.2). We address
this issue at inference time, as discussed in Section 3.3.4.

Post Processing TopK SAEs to JumpReLU Variants. Another modification is applied post-
training. We introduce a threshold, θ, to ensure that, on average, K features are activated across
the training distribution, rather than exactly K features being activated for every input (Templeton
et al., 2024a). Features with activations exceeding this threshold retain their values, while those
below are set to zero. This approach actually mirrors the JumpReLU activation function (Erichson
et al., 2020; Rajamanoharan et al., 2024) with its threshold set to θ. Further details can be found in
Section 3.3.4.

This variant combines the advantages of both Top-K and JumpReLU activations. Training with
a predetermined L0 is more intuitive, as it allows researchers to set a desired L0 and observe the
reconstruction loss during convergence. Additionally, thresholding during inference decouples the
activation of features, meaning each feature is evaluated independently. This avoids scenarios where
a feature remains inactive merely because other features are more strongly activated.

K-Annealing Training Schedule. In the early stages of training, we find it beneficial to gradually
reduce the number of activated features from D to K over the first 10% of training steps. This K-
annealing schedule improves convergence by allowing the model to adjust more smoothly to sparse
activations. We refer readers to Section 3.3.2 for details.

3 TRAINING LLAMA SCOPE SAES

Table 1 provides a broad overview of Llama Scope SAE suite, along with a comparison to recent
work on training Sparse Autoencoders on models with more than 8 billion parameters (Templeton
et al., 2024b; Gao et al., 2024; Lieberum et al., 2024).
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Llama Scope Scaling
Monosemanticity GPT-4 SAE Gemma Scope

Models Llama-3.1 8B
(Open Source)

Claude-3.0 Sonnet
(Proprietary)

GPT-4
(Proprietary)

Gemma-2 2B & 9B
(Open Source)

SAE Training Data SlimPajama Proprietary Proprietary
Proprietary, Sampled
from Mesnard et al.

(2024)

SAE Position
(Layer) Every Layer The Middle Layer 5

6 Late Layer Every Layer

SAE Position
(Site) R, A, M, TC R R R, A, M, TC

SAE Width
(# Features) 32K, 128K 1M, 4M, 34M 128K, 1M, 16M 16K, 64K, 128K,

256K - 1M (Partial)

SAE Width
(Expansion Factor) 8x, 32x Proprietary Proprietary 4.6x, 7.1x, 28.5x,

36.6x

Activation Function TopK-ReLU ReLU TopK-ReLU JumpReLU

Table 1: An overview of existing work training SAEs on Language Models with more than 8B
parameters.

3.1 COLLECTING ACTIVATIONS

Llama Scope SAEs are trained on activations generated from Llama-3.1-8B using text data sampled
from SlimPajama (Soboleva et al., 2023) with the proportions of each subset (e.g., Commoncrawl,
C4, Github, Books, Arxiv, StackExchange) preserved. All activations and computations are per-
formed using bfloat16 precision to optimize memory usage without sacrificing accuracy, as also
demonstrated in Lieberum et al. (2024) where bfloat16 and float32 activations are shown to have
similar performance.

Each document is truncated to 1024 tokens, and a <beginoftext> token is prepended to the start of
every document. During training, the activations of the <beginoftext> and <endoftext> tokens are
excluded from use.

It has been shown that the activations of different sequence positions of the same document tend to
be highly correlated (Bricken et al., 2023), potentially reducing the diversity of the training data. To
address this, randomness is introduced by employing a buffer shuffling strategy: the buffer is refilled
and shuffled at regular intervals (Appendix A.1).

3.2 TRAINING POSITION

We train SAEs at each layer and sublayer of Llama-3.1-8B. Specifically, there are four potential
training positions:

Llama-3.1-8B consists of 32 layers, resulting in 128 possible training positions when considering
all four options. For each training position, SAEs are trained with 8x (32K features) and 32x (128K
features) the dimension of the hidden size of Llama-3.1-8B.

Throughout this paper, we adopt the naming convention introduced by He et al. (2024) to label the
SAEs as L[Layer][Position]-[Expansion]x-[TopK,Vanilla]. For example, a Top-
K SAE trained on the post-MLP residual stream of layer 1 in Llama-3.1-8B, with an 8x expansion
of the hidden size is named as L1R-8x-TopK.

3.3 TRAINING DETAILS

3.3.1 INITIALIZATION

The decoder columns W dec
:,i are initialized with Kaiming uniform (He et al., 2016) and normalized

to have 2-norm of
√

2D
F =

√
2

expansion factor . The encoder weights W enc are initially set to the
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Transcoder
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Parameters

Sparse 
Autoencoders

Figure 1: Four potential training positions in one
Transformer Block.

• Post-MLP Residual Stream (R): The
residual stream after each Transformer
block, which is the overall result of com-
putations before this layer.

• Attention Output (A): The output of
each attention layer.

• MLP Output (M): The output of each
MLP layer.

• Transcoder (TC): A sparse approxima-
tion of the MLP block designed for cir-
cuit analysis (Ge et al., 2024; Dunefsky
et al., 2024). It differ from SAEs in that
it takes in the layer-normalized residual
stream as input and attempts to predict
MLP output.

transpose of the decoder weights W dec, though their parameters are untied after initialization. Both
the encoder bias benc and decoder bias bdec are initialized to zero.

This initialization strategy allows the SAE to start with a near-zero reconstruction loss, a widely
observed benefit in SAE training (Templeton et al., 2024b; Gao et al., 2024; Lieberum et al., 2024).

For transcoders, the encoder weights are not initialized as the transpose of the decoder weights, as
the input and output follow different distributions.

3.3.2 OPTIMIZATION

We train the SAEs using the Adam optimizer with β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The
learning rate is set to 8e-4 for all SAEs, with a warm-up from 0 to the target rate over the first 10K
steps, followed by a linear decay to 0 during the final 20% of training steps1.

We also observed that fixing the number of activated features to K throughout training can result in
some features not being activated until halfway of the training process. To address this, we gradually
reduce the number of activated features from D to K during the first 10% of training steps. This
approach, similar to L1 coefficient warmup in L1 regularization (Templeton et al., 2024b), ensures
more even feature activation throughout the training.

3.3.3 INPUT AND OUTPUT NORMALIZATION

The 2-norm of the input ∥x∥2 varies across different positions. To ensure consistent hyperparam-
eters, we normalize the input x to have a 2-norm of

√
D before passing it into the SAE, and the

reconstruction loss is computed with the same normalization. For Transcoders, we normalize both
the input and output to have a 2-norm of

√
D.

Formally, the input normalization is performed as follows:

xin ← xin · Sin,

xout ← xout · Sout,

where Sin and Sout are the scalar normalization factors defined as Sin =
√
D/E(||xin||2) and

Sout =
√
D/E(||xout||2). These two factors differ only when training transcoders.

3.3.4 POST-TRAINING PROCESSING

After training, we rescale the learned SAE weights to account for the input and output normalization
that was applied during training. This is done using the following transformations:

1We find that learning rate decay significantly benefits SAE training.
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W dec
:,i ←

W dec
:,i

Sout
· Sin,

bdec ← bdec

Sout
,

benc ← benc

Sin
.

For standard SAEs, where Sin = Sout, the decoder weights remain unchanged.

To simplify analysis, we further adjust the decoder columns W dec
:,i to have unit 2-norm. This ensures

that each column indicates only the direction of the corresponding feature, not its strength. The
encoder weights and bias are rescaled accordingly:

W dec
:,i ←

W dec
:,i

∥W dec
:,i ∥2

,

W enc
i,: ← ∥W dec

:,i ∥2 ·W enc
i,: ,

benci ← ∥W dec
:,i ∥2 · benci

After these two post-processing steps, the SAE operates on the original input and attempts to recon-
struct the original output. The decoder columns, now with unit 2-norm, represent the direction of
each feature, while the hidden layer encodes the magnitude of the corresponding feature.

4 EVALUATION

We evaluate all our SAEs after post-training processing (Section 3.3.4), focusing primarily on two
key aspects: how our SAEs advance the Pareto frontier of L0 sparsity and MSE efficiency (Sec-
tion 4.2), and the interpretability of the features extracted with both automated and manual analysis
(Section 4.3).

While our main focus is on these two areas, there are several other potential evaluation approaches.
These include assessing the causal relevance of features to one another, as explored in circuit anal-
ysis (He et al., 2024; Ge et al., 2024; Dunefsky et al., 2024), conducting fine-grained causal analy-
sis with counterfactuals (Huang et al., 2024), and performing automated prompt-based evaluations
across a wide range of tasks (Templeton et al., 2024a). We plan to explore these and emerging
methods as the field of SAE evaluation continues to develop.

Additionally, we investigate whether the features learned by state-of-the-art SAE variants differ from
those learned by vanilla SAEs (Section 4.6). We also assess the out-of-distribution generalization of
Llama Scope SAEs across sequence length and to instruct-finetuned models (Section 4.5).

4.1 DATA AND METRICS

We evaluate the SAEs using three primary metrics: L0-norm of SAE latents, explained variance,
and Delta LM loss. These metrics assess sparsity, reconstruction quality and the impact of the SAEs
on the language model’s performance, respectively.

Let x̂ be the SAE’s reconstruction of the input x, derived from Equation 2 and 5. The explained
variance (EV) measures the proportion of variance in the input captured by the SAE and is defined
as:

EV = 1− ∥x− x̂∥22
∥x∥22

. (6)

In addition to reconstruction quality, we measure the impact of the SAE on the language model with
Delta LM loss. This metric is defined as the difference between the original language model loss
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and the loss when the SAE is inserted at the corresponding position. Unlike explained variance and
reconstruction MSE, which focus solely on the accuracy of the SAE’s reconstruction, Delta LM loss
reflects the effect of the SAE on overall language model performance.

All evaluations are performed over 50 million tokens of held-out text data, sampled from the same
distribution as the training data.

4.2 SPARSITY-FIDELITY PARETO EFFICIENCY

TopK SAEs Outperform Vanilla SAEs. As shown in Figure 2, TopK SAEs consistently outper-
form vanilla SAEs in both L0 sparsity and MSE efficiency when trained on each quartile layer’s
post-MLP residual stream. Holding all other hyperparameters constant, TopK SAEs reduce L0 spar-
sity from around 150 to 50, while maintaining or improving both explained variance and Delta LM
loss. This improvement is likely due to TopK SAEs (1) mitigating the feature shrinkage issue, and
(2) removing weakly firing features.

Wider SAEs Achieve Better Pareto Efficiency. Figure 2 also shows that wider SAEs outperform
narrower ones in reconstruction while maintaining the same L0 sparsity. This suggests that, based
on these high-level metrics, there is a positive correlation between the number of features and the
overall quality of the SAEs. However, it is possible that wider SAEs simply learn more frequent
compositions of existing features rather than discovering entirely new ones (Anders et al., 2024).
We provide a counterexample to this in Section 4.6.
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Figure 2: Explained Variance (upper) and Delta LM loss (lower) over L0 sparsity for SAEs trained
on L7R, L15R and L23R.

Overall Assessment. Evaluation results for all 256 SAEs are illustrated in Figure 10 in Ap-
pendix B. Across all positions, layers and widths, TopK SAEs achieve consistently match or slightly
exceed the reconstruction quality of vanilla SAEs, while achieving significantly better L0 sparsity.
Wider SAEs show lower Delta LM loss and higher explained variance, all while maintaining the
same L0 sparsity.

Residual stream SAEs (LXR-8x and LXR-32x) generally outperform those trained on other posi-
tions in terms of the aformentioned 3 metrics. We conjecture this is due to Cross Layer Superposi-
tion (Olah & Jermyn, 2024) where the output of each model component only form a small fraction
to certain features, potentially introducing noise into the SAE training process.
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4.3 INTERPRETABILITY OF FEATURES
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Figure 3: Automatically labeled monosemanticity scores of L15R-8x SAE features.

We assess the interpretability of the features extracted by SAEs using automated analysis, following
the approach of Bills et al. (2023); Cunningham & Conerly (2024). For each feature, the 20 most
activating contexts are sent to GPT-4o to generate a description of the feature. GPT-4o also scores
each feature’s monosemanticity, from 1 (Not comprehensible) to 5 (Clear and consistent pattern),
using the rubric adapted from Cunningham & Conerly (2024):

• 5: Clear pattern with no deviating examples;
• 4: Clear pattern with one or two deviating examples;
• 3: Clear overall pattern but quite a few examples not fitting that pattern;
• 2: Broad consistent theme but lacking structure;
• 1: No discernible pattern.

We randomly selected 128 features from the L7R-8x, L15R-8x, and L23R-8x SAEs, for both TopK
and Vanilla SAEs, resulting in a total of 768 features. The monosemanticity results, shown in
Figure 3, indicate no significant difference between TopK and Vanilla SAEs.

Additionally, we performed manual analysis on a subset of these features. The manual evaluation is
consistent with the automated analysis, finding that about 10% of the features are not interpretable
(monosemanticity score of 1). We did not further distinguish between scores of 2-5, as it is difficult
to draw clear distinctions between these levels of interpretability.

It’s important to note that our analysis focuses on top activations, which may not assess each feature’s
behavior on low-activating samples. It has been observed that lower activating samples tend to be
less relevant to the interpretation (Bricken et al., 2023) for vanilla SAE features. Both TopK and
JumpReLU SAEs are designed to remove weakly firing instances and prioritize features with higher
activation levels, based on a threshold or rank-based thresholding. This may not reflected in the
monosemanticity scores, which is a limitation of our current evaluation.

4.4 ACTIVATION FREQUENCY

The firing frequency of latent features in SAEs is a crucial metric for validating the correctness of
the training process and diagnosing potential issues early. If too many features fire frequently, they
are likely to be uninterpretable. Conversely, if features rarely fire across a large number of tokens, it
could indicate that the sparsity constraints are too strict.

We empirically find that a satisfying proportion of inactive features (those that do not fire once over
100,000 tokens) is around 10%. This includes both ultra-rare features and potential training failures.
For larger SAEs, this threshold may be higher, but we use it to guide the training of Llama Scope
SAEs. Additionally, we aim to keep ultra-active features (those firing with a frequency greater than
0.1) below 2% of all features.

We show the firing frequency of L7R-8x, L15R-8x and L23R-8x TopK SAEs in Figure 4. The
firing frequency distribution of wider SAEs tend to left-shift towards lower frequency compared to
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Figure 4: Firing frequency of L7R-8x, L15R-8x and L23R-8x TopK SAEs.

narrower ones. This is expected, as wider SAEs have more features whereas top-k sparsity constraint
is fixed at 50 for both of them.

4.5 OUT-OF-DISTRIBUTION GENERLIZATION

Since SAE training is resource-intensive, it’s important that the models generalize beyond the train-
ing distribution. We evaluate the out-of-distribution generalization of our SAEs in two ways: on
longer contexts and on instruction-finetuned models.

4.5.1 ACROSS SEQUENCE LENGTH
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Figure 5: SAE performance on long context data, measured by MSE and L0 sparsity.

We selected all documents with more than 8192 tokens from L-Eval (An et al., 2024) and truncated
them to 8192 tokens, resulting in a dataset of 166 documents and 1.3 million tokens. The L0 sparsity
and MSE of Llama Scope SAEs on this dataset are shown in Figure 5.

Since our SAEs are trained on 1024-token sequences (Section 3.1), a slight decrease in performance
with longer sequences is expected. However, the degradation converges at around 8192 tokens. The
average reconstruction loss in the last 1024 tokens is 0.0086, which is a 12% increase compared to
the training data. The L0 sparsity increases from 50 to 55.

Although we have not fine-tuned our SAEs on longer sequences, we believe they can be further
optimized for long-context data with minimal fine-tuning, which we plan to explore in future work.

4.5.2 TO INSTRUCTION-FINETUNED MODELS

When discussing the generalization of SAEs to instruction-finetuned models, there are three key
dimensions to consider: the language model, SAE training data, and downstream tasks.
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Figure 6: L0 sparsity and Delta LM loss of L15R-8x TopK SAEs on instruction-finetuned models.

In Templeton et al. (2024b), SAEs trained on pretraining data with an instruction model generalized
well to downstream instruction-guided tasks2. This can be described as base SAE training data
generalizing to chat tasks while keeping the model fixed to instruction-finetuned models.

Our setup is similar to that of Kissane et al. (2024), where base SAE training data and a base
language model are generalized to chat models and chat data. Specifically, we use a subset of
the Wildchat dataset (Zhao et al., 2024) with 4K chat histories. These are fed into Llama-3.1-8B-
Instruct to generate activations, and we evaluate 32 LXR-8x-TopK and 32 LXR-32x-TopK SAEs on
this dataset 6.

With the exception of L31R-8x and L31R-32x (trained on residual stream activations just before
the final layernorm), no significant degradation in Delta LM loss or increase in L0 sparsity is ob-
served across the other SAEs3. This indicates that our SAEs generalize well to instruction-finetuned
models.

For example, replacing L15R activations with those reconstructed by L15R-32x-TopK SAEs in the
base model increases the language modeling loss by 0.162, whereas the increase is only 0.090 for
instruction-finetuned models, all while maintaining the same L0 sparsity. The smaller Delta LM loss
in Llama-3.1-8B-Instruct does not necessarily mean that the SAEs are better suited for instruction-
finetuned models, but rather that the downstream tasks are more robust to the SAE’s perturbations.

4.6 FEATURE GEOMETRY

To better understand the behavior of SAEs across different architectures and sizes, we analyze their
feature geometry, following the approach of Bricken et al. (2023); Templeton et al. (2024b). Specifi-
cally, we examine the cosine similarity between decoder columns W dec

:,i to identify adjacent features
in the activation space (the decoder view). For this analysis, we selected a feature in L15R-8x-TopK
that activates in contexts related to significant historical events, particularly those harmful to human-
ity. We then found the six most similar features in both L15R-8x-Vanilla and L15R-8x-TopK, and
the 24 most similar features in L15R-32x-TopK.

It is important to note that the cosine similarity between two features is not a direct measure of
their semantic similarity. However, we do find that features with high cosine similarity tend to have
similar interpretations, as shown in the following section.

The Threats-to-Humanity Cluster. Figure 7 shows the 2D UMAP projection of the decoder
columns for these 36 features. Using GPT-4o to describe their top activating samples (the encoder
view), we found a coherent theme across all features: they are related to events like wars, pandemics,
natural disasters, and other harmful occurrences.

2Interestingly, they also showed generalization to image data.
3The exceptions in the near-output space may offer interesting insights, though we do not explore them

further here.
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Figure 7: Feature geometry of L15R-8x-Vanilla, L15R-8x-TopK and L15R-32x-TopK SAEs.

UMAP, which preserves the local structure of data, also reveals more detailed local clusters. For
instance, the top-left region of Figure 7 contains features associated with large-scale wars, while
other regions correspond to themes such as climate change, pandemics, and financial crises.

How Close Enough are Features to Be Neighbors? One challenge in identifying feature neigh-
bors is the lack of a principled threshold for determining whether two features are close enough to
be considered neighbors. To address this, we provide a baseline based on the Johnson-Lindenstrauss
lemma’s inner product version. If we randomly project F true features to the D-dimensional hid-
den space, the probability of finding a pair (out of

(
F
2

)
pairs) that have cosine similarity larger than

ϵ =
√

12 lnF
D is approximately 2/F .4

For 8x SAEs, ϵ = 0.174, and for 32x SAEs, ϵ = 0.186. We empirically validate this by randomly
mapping F = 8 × 4096 (or 32 × 4096) features into a D = 4096-dimensional space, where we
find the maximum pairwise cosine similarity to be 0.09 (0.10). In comparison, the farthest cosine

4Proof can be found at https://home.ttic.edu/˜gregory/courses/
LargeScaleLearning/lectures/jl.pdf. The small difference between inner product and
cosine similarity is neglected for estimation purposes.
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similarity distance between the 36 features in Figure 7 is 0.28, suggesting that these features exhibit
non-trivial similarity.

Wider SAEs Do Learn New Features. In this case, features from L15R-32x-TopK are not merely
linear combinations of features from L15R-8x-TopK. For example, there is a distinct Brexit feature
in L15R-32x-TopK that activates exclusively on this topic, whereas the most similar feature in the
smaller SAEs is a more general Historical Movements feature. This suggests that wider SAEs are
capable of learning entirely new features, not just frequent compositions of existing ones.

TopK SAEs Learn Similar Features to Vanilla SAEs. We also observe that the features learned
by TopK SAEs closely resemble those in Vanilla SAEs, as measured by cosine similarity of the
decoder columns. This is visually supported by the fact that the blue dots (L15R-8x-Vanilla) and
green dots (L15R-8x-TopK) are intermixed in Figure 7 and share a common theme.

For a broader analysis, we computed the cosine similarity between all features in L15R-8x-TopK
and their most similar counterparts in L15R-8x-Vanilla. Figure 8 shows the cumulative distribution
of these similarity scores. The similarity between TopK and Vanilla SAEs is significantly higher
than a random baseline (where the max cosine similarity between two random SAEs of the same
size is computed). This indicates that TopK and Vanilla SAEs share a universal feature geometry.
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Figure 8: Feature geometry of L15R-8x-Vanilla, L15R-8x-TopK and L15R-32x-TopK SAEs.

5 RELATED AND FUTURE WORK

Scaling up Sparse Autoencoders. Building on recent success in scaling SAEs to large language
models (Templeton et al., 2024b; Lieberum et al., 2024; Gao et al., 2024), further scaling is likely
to continue with larger models. The development of customized GPU acceleration for SAEs (Gao
et al., 2024) holds great potential for extracting more complex concepts from larger models (Kaplan
et al., 2020; Hoffmann et al., 2022). Additionally, structured sparsity in Mixture-of-Expert (MoE)
SAEs, as mentioned in Gao et al. (2024) and Sharkey et al. (2024), has shown promise for efficient
SAE training (Mudide et al., 2024). This approach could significantly reduce computational costs
while maintaining performance, making it a promising avenue for future exploration.

Extending Neuron-Level Analysis to SAE Features. SAE features share similarities with MLP
neurons, which have been widely studied for their role in knowledge representation (Dai et al.,
2022), universality (Gurnee et al., 2023; 2024), and multilingual capabilities (Tang et al., 2024). In-
sights from these studies could be applied to SAE features to deepen our understanding of language
models. Recent work (Wang et al., 2024) suggests that universality across model architectures can
be reflected more accurately by SAE features than by MLP neurons.

13



Llama Scope: Extracting Millions of Features from Llama-3.1-8B with Sparse Autoencoders

Revealing a More Interpretable Latent Space. Understanding the activation space of language
models is a central challenge in interpretability research. We believe techniques used in language
model activation spaces can be applied to SAEs’ latent spaces. For instance, linear probes and
decision tree classifiers have been successfully used to predict harmful content from SAE fea-
tures (Bricken et al., 2024). Additionally, similarity metrics like Canonical Correlation Analysis
(CCA) have been shown to provide valuable insights into SAE latent spaces (Lan et al., 2024).

6 CONCLUSION

In this work, we introduced Llama Scope SAEs, a series of TopK Sparse Autoencoders trained on
the Llama-3.1-8B-Base model. The insights and lessons learned from this work provide a valuable
foundation for future improvements in SAE training. As mechanistic interpretability remains an
open field with many unexplored ideas, we hope that Llama Scope, alongside other open-source
SAEs, will help researchers save time and effort in their investigations.

Both language models and SAEs are evolving rapidly, and we see this as a long-term research
direction. We are excited to contribute to the growing body of open-source SAEs and to continue
pushing the epistemic frontier of SAEs in the future.
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A INFRASTRUCTURE

A.1 ACTIVATION BUFFER

One of the major challenges in training SAEs is the substantial storage and throughput required for
latent activations. While text data requires only 2 bytes per token, latent activations occupy 8K bytes
per token—resulting in a 4,096x increase in both storage needs and disk throughput. This, combined
with the relatively fast training steps of shallow SAEs, means that data loading quickly becomes the
main bottleneck in the training process.

Due to these infrastructure constraints, we do not save activations in advance but instead generate
them on-the-fly. This contrasts with the approach taken by Lieberum et al. (2024); Templeton et al.
(2024b), where activations are pre-saved and a high-speed dataloading pipeline is built to keep up
with training.

To manage this, we adopt a producer-consumer model. Language Models (LMs) generate activations
and store them in an activation buffer, while the SAEs consume the activations in random order.
The process is serialized: once the buffer is full, SAE training begins, and when half the buffer is
consumed, the LMs refill it. Each time the buffer is refilled, we shuffle it to introduce randomness
into the training data without needing to save and shuffle all activations at once.

A.2 MIXED PARALLELISM

LM Copy 0

GPU 1GPU 0

LM Copy 1

Activation Buffer
(Data Parallelism)

Sparse Autoencoder
(Tensor Parallelism)

Figure 9: Mixed parallelism strategy for
training SAEs.

To efficiently train SAEs with a large number of fea-
tures, we implement a mixed parallelism strategy, which
balances the memory demands of SAE training with the
slower process of activation generation. This approach
accelerates buffer refilling and reduces the memory bot-
tleneck during training.
As shown in Figure 9, a copy of the Language Model
(LM) is loaded on each GPU, while the SAE is dis-
tributed across GPUs using tensor parallelism. Each
GPU maintains its own independent activation buffer.
During training, a minibatch is sampled from the acti-
vation buffer on each GPU, and these minibatches are
all-gathered to form the input for the SAE.

This setup combines data parallelism for activation generation with tensor parallelism for SAE train-
ing. We empirically find that SAEs and their gradients consume significant memory, but individual
training steps are relatively fast. In contrast, activation generation is slower but requires less mem-
ory. By combining these parallelism techniques, mixed parallelism accelerates activation generation
while efficiently managing memory during SAE training.

A.3 COMPARISON TO PRE-SAVING APPROACH

Previous work on training large SAEs using distributed disk reading and extensive storage re-
sources (Lieberum et al., 2024; Templeton et al., 2024b) has typically been conducted in industrial
labs with powerful infrastructure. In contrast, our online activation generation approach eliminates
the need for vast storage resources, making it more suitable for academic research. With this method,
SAEs can be trained on an 8B-size model using just a single NVIDIA A100 GPU, without the need
to pre-save activations. In comparison, the pre-saving approach requires approximately 2TB of stor-
age and a disk throughput of at least 500MB/s to ensure that data loading keeps pace with training.

However, a key limitation of our online generation method is the potential for redundant computation
when training multiple SAEs on the same position. If we need to train SAEs with different widths
at the same position, the same activations must be generated multiple times, leading to 1-2 times the
redundant activation generation compared to the pre-saving approach.
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Figure 10: All 256 SAEs are evaluated on L0 sparsity (upper), explained variance (middle) and
Delta LM loss (lower).
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B EVALUATION RESULT FOR ALL SAES

C ABLATION STUDIES

Post-Processing Does Not Hurt Performance. We find that the post-processing step of Sec-
tion 3.3.4 does not hurt sparsity-fidelity trade-off. All post training transformations are compu-
tationally equivalent except for JumpReLU inference mode, where we do not use TopK sparsity
constraint but instead find a threshold where K features fire at each position in expectation. We eval-
uate the L0 sparsity and MSE efficiency of all 32 LXR-8x-TopK SAEs with and without JumpReLU
inference mode. The results are nearly identical, as shown in Figure 11.
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Figure 11: Drop in performance is negligible after switching to JumpReLU inference mode.

K-Annealing Accelerates Convergence. Figure 12 shows the training curve of L15R-8x-TopK
SAEs with and without annealing K at start of training. By annealing K from 4096 to 50 in the first
10% of the training steps, we find that the SAEs latents are active during the whole training process
(almost all features fire at least once over 1e6 tokens). In comparison, the SAE features without
K-annealing do not begin to activate until about 1/3 of the training steps. Besides, both training
curves converge to the same MSE loss but the K-annealing curve converges faster.

Figure 12: Convergence of L15R-8x-TopK SAEs with and without K-Annealing.
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Including Decoder L2 Norm Improves Reconstruction? We also ablated the inclusion of de-
coder L2 norm in the topk sparsity constraint (Equation 5) with all other hyperparameters fixed.
However, the original version reported by Gao et al. (2024) where the decoder L2 norm is fixed to 1
after each training step is significantly worse in terms of MSE loss (at least a 0.05 drop in variance
explained). We suspect there are bugs in replicating this baseline and leave it as future work.

D PROMPT DESIGN FOR FEATURE INTERPRETABILITY

We are analyzing the activation levels of features in a neural network,
where each feature activates certain tokens in a text. Each token’s
activation value indicates its relevance to the feature, with higher
values showing stronger association. Your task is to give this feature
a monosemanticity score based on the following scoring rubric:

Activation Consistency

5: Clear pattern with no deviating examples

4: Clear pattern with one or two deviating examples

3: Clear overall pattern but quite a few examples not fitting that
pattern

2: Broad consistent theme but lacking structure

1: No discernible pattern

Consider the following activations for a feature in the neural
network. Activation values are non-negative, with higher values
indicating a stronger connection between the token and the
feature. You only need to return a number. It
represents your score for feature monosemanticity.

[Context]
Sentence 1:
<START>
students 0.0
to 0.0
build 0.0
and 0.0
repair 0.0
all 0.0
varieties 0.0
of 0.0
aviation 0.0
instrumentation 0.0
. 0.0
The 0.0
se 0.0
ap 0.0
lane 0.0
base 0.0
continued 0.0
operations 0.0
during 0.0
the 0.0
war 3.1
as 0.0
an 0.0
all 0.0
-f 0.0

<END>
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